回溯
简介
回溯算法(backtracking algorithm)是一种通过穷举来解决问题的方法,它的核心思想是从一个初始状态出发,暴力搜索所 有可能的解决方案,当遇到正确的解则将其记录,直到找到解或者尝试了所有可能的选择都无法找到解为止。
回溯算法通常采用“深度优先搜索”来遍历解空间。
常见问题
全排列问题
在给定一个集合(如一个数组或字符串)的情况下,找出其中元素的所有可能的排列。
- 无重复元素情况
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""回溯算法:全排列 I"""
# 当状态长度等于元素数量时,记录解
if len(state) == len(choices):
res.append(list(state))
return
# 遍历所有选择
for i, choice in enumerate(choices):
# 剪枝:不允许重复选择元素
if not selected[i]:
# 尝试:做出选择,更新状态
selected[i] = True
state.append(choice)
# 进行下一轮选择
backtrack(state, choices, selected, res)
# 回退:撤销选择,恢复到之前的状态
selected[i] = False
state.pop()
def permutations_i(nums: list[int]) -> list[list[int]]:
"""全排列 I"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res
"""Driver Code"""
if __name__ == "__main__":
nums = [1, 2, 3]
res = permutations_i(nums)
print(f"输入数组 nums = {nums}")
print(f"所有排列 res = {res}")